Exact Bounds for Orthogonal Polynomials Associated with Exponential Weights*

Paul Nevai
Department of Mathematics, Ohio State University, Columbus, Ohio 43210, U.S.A.
Communicated by R. Bojanic
Received February 27, 1984

Estimates for orthogonal polynomials associated with $\exp \left(-x^{m}\right), x$ real, m even, are dealt with. © 1985 Academic Press, Inc.

Let $w(x)=\exp \left(-x^{m}\right), x \in \mathbb{R}$, where m is a fixed positive even integer and let $\left\{p_{n}\right\}_{n=0}^{\infty}$ denote the corresponding system of orthogonal polynomials. I conjectured in [13] that there exist constants c_{1} and c_{2} such that

$$
\begin{equation*}
w(x) p_{n}^{2}(x) \leqslant c_{1} n^{-1 / m}, \quad|x| \leqslant c_{2} n^{1 / m}, \tag{1}
\end{equation*}
$$

for $n=1,2, \ldots$, and this was proved by my former student Bonan [1]. In this note I show how to apply recent results on orthogonal polynomials by Dombrowski [2], Dombrowski and Fricke [3], Freud [4, 5], Lew and Quarles [8], Magnus [9], Máté and Nevai [10] and Máté, Nevai and Zaslavsky [11] to prove the following improvement of (1).

Theorem 1. For every given $0<c<1$ there exists a constant $c_{3}=c_{3}(c)$ such that

$$
\begin{equation*}
w(x) p_{n}^{2}(x) \leqslant c_{3} n^{-1 / m}, \quad|x| \leqslant c\left[\sqrt{\pi} \frac{\Gamma(m / 2)}{\Gamma((m+1) / 2)}\right]^{1 / m} n^{1 / m}, \tag{2}
\end{equation*}
$$

for $n=1,2, \ldots$.
For $m=2$, that is for the Hermite polynomials, it is well known that (2) is not valid with $c=1$ anymore [19, p. 201] and thus one may reasonably expect that (2) fails for all m with $c=1$ though I cannot prove this at the present time. However, one should be able to prove that (2) fails with $c=1$

[^0]by exploiting Mhaskar and Saffs ideas in [12]. For $m=4$ and $m=6$, Theorem 1 was proved by Nevai [14] and Sheen [18] respectively, and it was used to obtain Plancherel-Rotach-type asymptotics for the polynomials p_{n} in [15] and [18]. I anticipate similar applications of (2) for $m \geqslant 8$. Rahmanov [17] proved that the largest zero X_{n} of p_{n} satisfies
$$
\lim _{n \rightarrow \infty} X_{n} n^{-1 / m}=\left[\sqrt{\pi} \frac{\Gamma(m / 2))}{\Gamma((m+1) / 2)}\right]^{1 / m}
$$
(conjectured by Freud [7]) and thus (2) yields an estimate for p_{n} when $|x| \leqslant c X_{n}, 0<c<1$.

Let $x_{k n}, k=1,2, \ldots, n$, denote the zeros of p_{n}.

Theorem 2. There exist positive constants c_{4}, c_{5}, and c_{6} such that

$$
\begin{equation*}
w\left(x_{k n}\right) p_{n-1}^{2}\left(x_{k n}\right) \leqslant c_{4} n^{-1 / m}, \quad k=1,2, \ldots, n \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
w\left(x_{k n}\right) p_{n-1}^{2}\left(x_{k n}\right) \geqslant c_{5} n^{-1 / m}, \quad\left|x_{k n}\right| \leqslant c_{6} n^{1 / m}, \tag{4}
\end{equation*}
$$

are satisfied for $n=1,2, \ldots$.
Inequality (4) was also proved by Bonan [1] who used different arguments. It is likely that c_{6} in (4) can be replaced by

$$
c\left[\sqrt{\pi} \frac{\Gamma(m / 2))}{\Gamma((m+1) / 2)}\right]^{1 / m}
$$

where $0<c<1$ but proving this is beyond my reach at this time.
The polynomials p_{n} satisfy the recursion formula

$$
\begin{equation*}
x p_{n}=a_{n+1} p_{n+1}+a_{n} p_{n-1}, \tag{5}
\end{equation*}
$$

$n=0,1, \ldots, a_{0}=0$. The heart of the proof of both Theorems 1 and 2 is the magic formula

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left[a_{k+1}^{2}-a_{k}^{2}\right] p_{k}^{2}=a_{n}^{2}\left(p_{n-1}-\frac{x}{2 a_{n}} p_{n}\right)^{2}+a_{n}^{2}\left(1-\frac{x^{2}}{4 a_{n}^{2}}\right) p_{n}^{2} \tag{6}
\end{equation*}
$$

coupled with the asymptotics

$$
\begin{equation*}
a_{n} n^{-1 / m}=\frac{1}{2}\left[\sqrt{\pi} \frac{\Gamma(m / 2)}{\Gamma((m+1) / 2)}\right]^{1 / m}+O\left(n^{-2}\right), \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

Formula (6) is valid for every system of orthogonal polynomials generated
by a recurrence of the form (5) and it was discovered by Dombrowski and Fricke [3] and generalized in Dombrowski [2]. For $m=2$, (7) is obvious, for $m=4$ it was proved by Lew and Quarles [8], $m=6$ is done in Máté and Nevai [10], whereas the general case when m is an arbitrary fixed positive even integer was treated in Máté, Nevai, and Zaslavsky [11] where a theorem of A. Magnus [9] solving a conjecture of Freud [6] is applied to proving (7). The remaining ingredient of the proof of (2) (4) comes from Freud [4,5] who proved

$$
\begin{equation*}
w(x) \sum_{k=0}^{n-1} p_{k}^{2}(x) \leqslant c_{7} n^{1-1 / m}, \quad x \in \mathbb{R} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
w(x) \sum_{k=0}^{n-1} p_{k}^{2}(x) \geqslant c_{8} n^{1-1 / m}, \quad|x| \leqslant c_{9} n^{1 / m} \tag{9}
\end{equation*}
$$

$n=1,2, \ldots$, with suitably choosen positive constants c_{7}, c_{8}, and c_{9}.
I can hardly resist the temptation to say "Theorems 1 and 2 easily follow from (5)-(9)." I do so and give a few hints as to the nature of the proofs. By (7), we can find two positive constants c_{10} and c_{11} such that

$$
\begin{equation*}
a_{k+1}^{2}-a_{k}^{2} \geqslant c_{10} k^{2 / m-1}, \quad k \geqslant c_{11}, \tag{10}
\end{equation*}
$$

and then (4) follows from (6), (7), (9), and (10) by straightforward estimates with $c_{6}=c_{9}$. Applying again (7) we find another constant c_{11} such that

$$
\begin{equation*}
\left|a_{k+1}^{2}-a_{k}^{2}\right| \leqslant c_{11} k^{2 / m-1}, \quad k=1,2, \ldots \tag{11}
\end{equation*}
$$

If $2^{N-1} \leqslant n-1<2^{N}$ then by (6) and (11)

$$
\begin{aligned}
a_{n}^{2}\left(1-\frac{x^{2}}{4 a_{n}^{2}}\right) p_{n}^{2} & \leqslant a_{1}^{2} p_{0}^{2}+c_{11} \sum_{k=1}^{2^{N}} k^{2 / m-1} p_{k}^{2} \\
& =a_{1}^{2} p_{0}^{2}+c_{11} \sum_{l=0}^{N-1} \sum_{k=2^{l}}^{2^{l+1}} k^{2 / m-1} p_{k}^{2} \\
& \leqslant a_{1}^{2} p_{0}^{2}+c_{11} \sum_{l=0}^{N-1} 2^{l(2 / m-1)} \sum_{k=0}^{2^{l+1}} p_{k}^{2}
\end{aligned}
$$

and now (2) follows from (7) and (8). The proof of (3) is essentially identical to the one of (2).

For further orientation I recommend my survey [16].

References

1. S. Bonan, Applications of G. Freud's theory, I, in "Approximation Theory, IV" (C. K. Chui et al., Eds.) Academic Press, New York, 1984, 347-351.
2. J. M. Dombrowski, Tridiagonal matrices and absolute continuity, unpublished manuscript.
3. J. M. Dombrowski and G. H. Fricke, The absolute continuity of phase operators, Trans. Amer. Math. Soc. 13 (1975), 363-372.
4. G. Freud, On weighted L_{1}-approximation by polynomials, Studia Math. 46 (1973), 125-133.
5. G. Freud, On polynomial approximation with the weight $\exp \left(-x^{2 k} / 2\right)$, Acta Math. Acad. Sci. Hungar. 24 (1973), 363-371.
6. G. Freud, On the coefficients in the recursion formulae of orthogonal polynomials, Proc. Roy. Irish Acad. Sci. Sect. A 76 (1976), 1-6.
7. G. Freud, On the greatest zero of an orthogonal polynomial, J. Approx. Theory in press.
8. J. S. Lew and D. A. Quarles, Nonnegative solutions of a nonlinear recurrence, J. Approx. Theory 38 (1983), 357-379.
9. Al. Magnus, A proof of Freud's conjecture about the orthogonal polynomials related to $|x|^{\rho} \exp \left(-x^{m}\right)$ for integer m, in "Orthogonal Polynomials and Their Applications", (C. Brezinski et al., Eds.), Lecture Notes in Math., Springer-Verlag, Berlin, 1985.
10. A. Máté and P. Neval, Asymptotics for solutions of smooth recurrence equations, Proc. Amer. Math. Soc. in press.
11. A. Máté, P. Nevai, and T. Zaslavsky, Asymptotic expansions of ratios of coefficients of orthogonal polynomials with exponential weights, Trans. Amer. Math. Soc. in press.
12. H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 203-234.
13. P. Neval, Lagrange interpolation at zeros of orthogonal polynomials, in "Approximation Theory, II" (G. G. Lorentz et al., Eds.), Academic Press, New York, 1976, 63-201.
14. P. Neval, Orthogonal polynomials associated with $\exp \left(-x^{4}\right)$ (Second Edmonton Conference on Approximation Theory) CMS Conf. Proc. 3 (1983), 263-285.
15. P. Neval, Asymptotics for orthogonal polynomials associated with $\exp \left(-x^{4}\right)$, SIAM J. Math. Anal. 15 (1984), 1177-1187.
16. P. Neval, Two of my favorite ways of obtaining asymptotics for orthogonal polynomials, in "Functional Analysis and Approximation" (P. L. Butzer and B. Sz. Nagy, Eds.), ISNM 65, Birkhauser-Verlag, Basel, 1984, 417-436.
17. E. A. Rahmanov, On asymptotic properties of polynomials orthogonal on the real axis, Math. USSR Sb. 47 (1984), 155-193.
18. R. Sheen, "Orthogonal Polynomials Associated with $\exp \left(-x^{6} / 6\right)$," Ph.D. dissertation, Ohio State University, Columbus, 1984.
19. G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc., Providence, R.I., 1975.

[^0]: * This material is based upon research supported by the National Science Foundation under Grant MCS-83-00882.

