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Estimates for orthogonal polynomials associated with exp( _xm
), x real, m even,

are dealt with. © 1985 Academic Press. Inc.

Let w(x) = exp( _xm
), x E IR, where m is a fixed positive even integer and

let {Pn} ~=o denote the corresponding system of orthogonal polynomials. I
conjectured in [13] that there exist constants c 1 and C2 such that

(1)

for n = 1, 2,..., and this was proved by my former student Bonan [1]. In
this note I show how to apply recent results on orthogonal polynomials by
Dombrowski [2], Dombrowski and Fricke [3], Freud [4,5], Lew and
Quarles [8], Magnus [9], Mate and Nevai [10] and Mate, Nevai and
Zaslavsky [11] to prove the following improvement of (1).

THEOREM 1. For every given 0 < c < 1 there exists a constant C3 = c3(c)
such that

[
r(m/2) Jl1m

Ixl ~ c fi. r((m + 1)/2) n
11m

, (2)

for n = 1, 2,....

For m = 2, that is for the Hermite polynomials, it is well known that (2)
is not valid with c= 1 anymore [19, p. 201] and thus one may reasonably
expect that (2) fails for all m with c = 1 though I cannot prove this at the
present time. However, one should be able to prove that (2) fails with c = 1

* This material is based upon research supported by the National Science Foundation
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by exploiting Mhaskar and Saffs ideas in [12]. For m::;: 4 and m = 6,
Theorem 1 was proved by Nevai [14] and Sheen [18] respectively, and it
was used to obtain Plancherel-Rotach-type asymptotics for the
polynomials Pn in [15] and [18]. I anticipate similar applications of (2)
for m ~ 8. Rahmanov [17] proved that the largest zero X n of PI! satisfies

. -11m _[ T(m/2)) Jllm
}:~ Xnn - -fie r«m + 1)/2)

(conjectured by Freud [7]) and thus (2) yields an estimate for Pn when
Ixl ~cXn, o<c< 1.

Let Xkn' k = 1, 2,..., n, denote the zeros of Pn'

THEOREM 2. There exist positive constants c4 , C5' and C6 such that

k = 1,2,..., n (3)

and

(4)

are satisfied for n = I, 2,....

Inequality (4) was also proved by Bonan [1] who used different
arguments. It is likely that C6 in (4) can be replaced by

[
r(m/2)) Jllm

C -fie T(m + 1)/2)

where 0 < c < 1 but proving this is beyond my reach at this time.
The polynomials Pn satisfy the recursion formula

(5)

n =0, 1,..., ao=O. The heart of the proof of both Theorems 1 and 2 is the
magic formula

coupled with the asymptotics

(6)

-11m 1 [r:. r(m/2) Jllm -2
ann ="2 v n r«m+l)/2) +O(n), n= 1, 2,.... (7)

Formula (6) is valid for every system of orthogonal polynomials generated
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by a recurrence of the form (5) and it was discovered by Dombrowski and
Fricke [3] and generalized in Dombrowski [2]. For m = 2, (7) is obvious,
for m = 4 it was proved by Lew and Quarles [8], m = 6 is done in Mate
and Nevai [10], whereas the general case when m is an arbitrary fixed
positive even integer was treated in Mate, Nevai, and Zaslavsky [11]
where a theorem of A. Magnus [9] solving a conjecture of Freud [6] is
applied to proving (7). The remaining ingredient of the proof of (2)-(4)
comes from Freud [4,5] who proved

and

n-l

w(x) L p~(x) ~ c7 n l
-

l
/
m

,

k~O

n-l

w(x) L p~(x) ~ Cg nl-I/m,
k=O

XE IR (8)

(9)

n = 1, 2,..., with suitably choosen positive constants C7, Cg , and C9'

I can hardly resist the temptation to say "Theorems 1 and 2 easily follow
from (5)-(9)." I do so and give a few hints as to the nature of the proofs.
By (7), we can find two positive constants CIO and Cll such that

(10)

and then (4) follows from (6), (7), (9), and (10) by straightforward
estimates with C6 = C9 • Applying again (7) we find another constant C ll

such that

k= 1, 2,.... (11 )

If 2N
- 1~ n - 1 < 2N then by (6) and (11)

a2(1_~)p2:;::: a2p2+ C ~ k 2/m- 1 p2
n 4 2 n"" I 0 11 L, k

an k= I

N-l 21+1

=aip6+ Cll L L k2/m-Ip~
1=0 k = 21

N-I 21+ 1

~aip6+Cll L 21(2/m-l) L p~

1=0 k=O

and now (2) follows from (7) and (8). The proof of (3) is essentially iden
tical to the one of (2).

For further orientation I recommend my survey [16].
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